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TREATMENTS OF DISCONTINUITY AND 

BUBBLE FUNCTIONS IN THE MULTIGRID METHOD 

SHANGYOU ZHANG AND ZHIMIN ZHANG 

ABSTRACT. When multilevel finite element spaces are not nested, different in- 
tergrid transfer operators would lead to different multigrid algorithms. It is 
proposed in this paper that discontinuous functions be averaged to continuous 
functions and that the bubble functions be discarded in the multigrid trans- 
ferring. Applications of the techniques to various problems are presented with 
convergence analysis. Numerical comparisons with other existing methods are 
provided. 

1. INTRODUCTION 

The multigrid method provides optimal-order algorithms for solving large linear 
systems of finite element and finite difference equations (cf. [3]). The multigrid 
theory is well established (cf. [12], [16], [3], [15] and [5]). However, in many 
situations, the multi-level discrete spaces are nonnested due to the nature of the 
underlying finite elements ([4], [7]-[8], [18], [25]) or due to the special structures 
of grids (cf. [6], [9] [20], [26], [27]). Some special treatments are then needed to 
extend the standard multigrid method. 

Brenner [7] and Braess-Verffirth [4] have studied P1 nonconforming multigrid 
methods. The intergrid transfer operator in [7] averages the midpoint values of 
coarse-level functions on the two sides of each edge. This operator is generalized in 
[4], where the averaging is weighted by the areas of two neighboring triangles, such 
that the nonconforming multigrid method can be covered by the standard multigrid 
theory. However, the analysis of [4] is not valid for variable coefficient equations. 
Brenner [8] and Verffirth [25] also have treated bubble functions in multigrid meth- 
ods. They have two different averaging operators to transfer a coarse-level bubble 
(a cubic polynomial vanishing at three edges of a triangle) to four small bubbles 
on the four subtriangles, In this paper, numerical tests on [71, [4], [8], [25] will be 
presented along with some tests on several new algorithms. 

Different from [7], [8], [4], [25], we average a discontinuous finite element function 
to a continuous one which is naturally in the higher-level nonconforming finite ele- 
ment (NCF) space. We also discard bubble functions in transferring them to higher 
levels. By using averaging functions and discarding bubbles we would still retain 
the smooth components of coarse-level solutions. It is shown that the new multigrid 
methods converge with constant rates and retain the optimal order of computation 
for several model problems. The direct estimate of strengthened Cauchy inequal- 
ities in [25] would limit the extension of the theory there, while the analysis here 
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is valid in higher-dimensional spaces and for higher degree elements with bubbles 
(cf. [2]). 

The rest of the paper is organized as follows. In ?2, the P1 nonconforming multi- 
grid method is defined. The constant rate of convergence and the optimal order of 
computation for the nonconforming multigrid method are proved in ?3. Raviart- 
Thomas mixed triangular elements and their nonconforming finite element corre- 
spondence are introduced in ?4. Section 5 is devoted to solving Raviart-Thomas 
finite element equations via nonconforming multigrid methods. A brief discussion 
on the multigrid method for the Wilson element is given in ?6. A multigrid itera- 
tion for solving mini-element equations arising from discretizing stationary Stokes 
equations is defined in ?7 and the convergence analysis is presented in ?8. We 
present some numerical results in ?9 with discussions on implementing the multi- 
grid method. In some numerical computations, the cubic bubble functions are 
replaced by linear macro-bubbles to avoid higher order quadratures. 

2. P1 NONCONFORMING ELEMENTS 

For simplicity, we consider the following Poisson equation in a convex, bounded, 
polygonal domain in R2: 

(2.1) -Au f in Q, u = O on Q, 

and its weak formulation: Find u E Ho (Q), such that 

a(u, v) (fv) Vv E Ho c 

where a(u, v) f= Vu* Vv dx, (f , v) f f v dx and Ho' (Q) is the space of Sobolev 
W1 2 (Q) functions with zero trace on &Q. We note that the analysis here covers 
general self-adjoint elliptic problems. 

Let {Tk} be a nested family of triangulations on Q, where Tk is obtained by refin- 
ing each triangle in Tk1I into four congruent subtriangles by connecting midpoints 
on edges. The mesh sizes of these quasiuniform grids have the relation hk= hkl /2. 
The work here can be extended to the case of nonquasiuniform meshes as in [27]. 
Let Vk be the P1 nonconforming space on grid Tk, i.e., the space of all piecewise 
linear functions on Tk which are continuous at midpoints of all edges and van- 
ish at midpoints of all boundary edges. The finite element problems arising from 
discretizing (2.1) read: Find Uk E Vk, such that 

(2.2) ak(Uk,v) = (f,v) Vv E Vk, 

where ak(uV) := EKCTk IKVU * Vv dx for all u, v E Vk+ Ho (Q). It is known from 
[22] that 

(2.3) -uk L2(Q)+hkuuk 1k < Chk 2 

where u and Uk are solutions of (2.1) and (2.2) respectively, and pV 1,k k(ve, v):. 

Here and later, C stands for a generic constant independent of the multigrid 
index k. 

Since VklI t Vk, we introduce auxiliary, P1 conforming finite element spaces 

{Vk} (cf. [10]). We note that Vk = Vk n Ho (Q). It holds that ([10]) 

(2.4) 
inf { u - V L2(Q) + hkJU - V 1,k} < Chk 2UI H2(Q) Vu E H 2(Q) n Ho(Q). 

V Vk C Vk 
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Noting that Vkl is a subspace of both Vk1 and of Vk (in fact Vk1 = Vk- n Vk), 

we define an intergrid transfer operator ik : Vkl - Vkkl C Vk: For any v E Vkl, 

ja 

(2.5) (Ikv)(a) = Z Ev|K, (a) 
Ja 

j=_ 

and (Jkv)(a) 0 0 if a E &Q, where a is a vertex in Tk-l and _K3}'3- are all the 
triangles in Tk-l which have a as a vertex. We will introduce a few more intergrid 
transfer operators in ?9. 

Let Ak : Vk --Vk be defined by (Aku, v) ak(u, v) Vu,v E Vk, and 

(2.6) | VIs,k := (Avv) Vv c Vk, 0 < s < 2. 

We note that IvI0,k = L1VH1L2(Q) and that JVl1,k ak(VV) Let Ak be the spectral 
radius of Ak. By a simple calculation (cf. [10]) on each triangle, we have the inverse 
estimate: Ak < Ch I7. We now define a multigrid scheme for solving (2.2) (cf. [3]). 

Definition 2.1 (one kth-level multigrid iteration). 
(1) For k = 1, the original problem (2.2) or the residual problem (2.8a) defined 

below is solved exactly. 
(2) For k > 1, wm+l will be generated from wo by the following two steps. We 

do m smoothings: 

(2.7) (wl-wl-lv)=A-1((f,v)-aCk(Wl-,V)) Vv E Vk, = 1, 2, ..., m, 

and a coarse-level correction: wm+l = wm + ikc, where e E Vkl is obtained by 
doing p (> 1) (W-cycle iterations) (k - 1)st-level multigrid iterations starting with 
0 guess for the following residual problem: Find Ca E Vkl, such that 

(2.8a) ak-l(EaV) = (f,ikv)-ak(WmikV) =: (fnewV) VV E Vk-1. 

In nested multigrid methods, the prolongation operator ik in Definition 2.1 is 
simply the identity operator. Indeed, noting f/k c Vk, we can define such a coarse- 
level correction: Find = 6b E Vk-l (or * = Ec e Vk, resp.), such that 

(2.8b,c) a(%' v) (f,v)-ak(Wmv) = (fnewV) Vv f c Vk, 

where in (2.8b) V = Vkl (in (2.8c) V = Vk, resp.) We note that the method 
with (2.8b) or (2.8c) is covered by a standard multigrid analysis (see the proof for 
Theorem 3.3 below or [3]). To use (2.8b) or (2.8c), one needs to implement both 
conforming and nonconforming elements. But for the purpose of comparison, we 
still include methods (2.8b,c) in our tests in ?9. 

3. CONVERGENCE OF P1 NONCONFORMING MULTIGRID METHODS 

The central task is to estimate the perturbation to the orthogonal-projection 
property caused by the intergrid transfer operator in the coarse-level correction 
(2.8a). The perturbation relates strongly to the stability of ik, which will be studied 
in the next lemma. 

Lemma 3.1. It holds that 

(3.1) lIkV1l,k < C|V~1,k-1 VV E Vk-1 for 1 = 0, 1. 
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Proof. The proof uses a straightforward triangle by triangle argument. Let K E 
Tkl have vertices {a,, a2, a3}, {KzjJ}i 1 C Tk- having ai as a vertex, and let 
Vzj = VI Kj (ai ). 

3 3 % 

(3.2) HJkV1L2K < |K Z(JkV)2(ai) < Ch_1 iZ 2vj-2 < CIIVII2(U K )- 
i21 i=l j=l 

Summing (3.2) over all triangles in Tk-1, (3.1) is proved for 1 = 0 where C depends 
only on the smallest angle (the same on all levels) in ET1. Let wij be the nodal value 
of v at the midpoint of the edge shared by two triangles Kij and Kij+l (we let 

Ki,j,+l = Ki1). Here we list {Kij} such that w1I = W3j3 and wlj1 = w232. As ik is 

an averaging operator, we get a telescoping sum in the estimate below. 

I|VIkVl L2(K) < Chk-1 ((kv(a2) -Ikv(al)) + (Ykv(a3) -ikv(al))) 

Ch2 
- 

12 = hk (J E (V2j - W2j + W23 - v2,j+I) + (V2i2-w2j2 
j=l 

j 

ji-1 ~~~~~~~~~~2 
+ W1, - VIjl)- (V- I - W1j + Wj - Viij+i)) 

+ Chk-1 E. (V3j - W3j + W3j - V3,J+l) + (V3j3 - W3j 

+ Wl - VII) - J ) (V13 - W1 + WIj - Vj+1))2 
j-1 i1 

< CIIVVIL2(UJ I?) 

Summing over all triangles, (3.1) is proved for 1 = 1. EZ 

To analyze the coarse-level corrections (2.8a-c), we introduce the following op- 

erators: 

(3.3a) Pa: Vk - Vk1, ak-l(PaVw) = ak(Vikw) VW E Vk-1, 

(3.3b) Pb D(Pb) * Vk-1, a(Pbv,w) = ak(v,w) VW E Vkl-, 

where D(Pb) = Vk+Vk-I+Ho (Q) in (3.3b). We note that Pb is an ak(, ) orthogonal- 
projection operator. In particular, by (2.4) u - Pbul1,k-I < Chk-1IIUIIH2(Q). 

Lemma 3.2. For any v C V1, 1 = k - 1 or = k, it holds that 

Iv- Pbvlo,l < Chilv - Pbvll,l. 

Proof. We use a standard duality argument. Let u be the solution of (2.1) with 

f = v - Pbv. Let ul be the corresponding finite element solution of (2.2). Noting 

Pbv C Vkk C V1, the lemma is proved by the following estimate: 

V- Pbv 2, = al(ul, v - Pbv) = a(ul - Pbu,, v - Pbv) 

< Ii - PbUhl,l Iv -PbVl1,l 
< (|U1 - Uli,1 + Iu - Pbulll)Iv - PbVII,1 

< Chi .IIH2Q IV PbVI, <5 Chi IV - _.vo~ IV -. P_. 1I, 
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where (2.3)-(2.4) and ||U||H2 < CO JfJL2 = Cv -PbVIOl (since Q is convex, cf. [11]) 
are applied. ED 

Theorem 3.3 (The two-level method). Let e = (a in Definition 2.1. Given any 
0 < y < 1, there exists an integer m independent of k such that 

(3.4) | k - Wm?,+l 1,k < Y |Uk - W0 I 1,k, 

where Uk is defined in (2.2) and wl in Definition 2.1. 

Proof. Let the errors be denoted by el = k- Wl for 0 < 1 < m + 1. We need to 
show lem,+ I 1,k < -yjeo I 1,k. By Definition 2.1 and (3.3a-b), we have ea = Paem and 
consequently we get that 

(3.5) lem+1 i,k = lem -ikEall,k = lem -ikPaemllk 

< |em - Pbem l,k + |Pbem -ikPaem|l,k. 

The first term in (3.5) can be estimated by Lemma 3.2 as follows, noting Pb is an 

ak (, *) orthogonal-projection operator. 

(3.6) lem - Pbem 121,k < em - Pbem 0,k em 2,k < Chk em - Pbem i,k em 2,k- 

For the second term in (3.5), we derive by Lemma 3.1 that 

(3.7) JPbem -ikPaem|1,k = lik(Pbem - Paem)lk < CIPbem - Paem~l,k-1. 

Noting that ikw = w for all w E Vki1 and that 

a(PbPaem, w) = ak-l(Paem, w) = ak(em, ikw) = ak(em, w) = a(Pbem, w), 

we have PbPaem = Pbem. Therefore, we can apply Lemmas 3.1 and 3.2 to estimate 

the right-hand side of (3.7) as follows. For any v E Vk_1, 

(3.8) ak-1 (PbPaem - Paem, v) = ak-1 (Paem, Pbv - v) 

= ak(em, Jk(Pbv - v)) < lemJ2,k Jk(PbV - V)10,k 

? lem 2,k(ClPbV - V0,k-1) < Chk em 2,k PbV - V 1,k-1 

? Chk |em 2,k V 1,k-1 

Therefore, the second term in (3.5) can be estimated by (3.7) and (3.8) as 

(3.9) JPbem -ikPaem|1,k < CIPbPaem - Paem|lk-1 < Chk em 2,k. 

For the smoothing iteration (2.7) we have (cf. [3] for example) 

(3.10) lem|2,k < Cm 
' 

/Ak / leollk < Cm1/ hk e0|1,k. 

Combining (3.5)-(3.6) and (3.9)-(3.10), (3.4) is proved by letting m > (C/7)2: 

lem+1i < Cm-'/2 leoll,k < ayleoel,k . E 

By a standard argument in [3] and Theorem 3.3, one can show the convergence for 

W-cycle iterations and the theorem of optimal-order computation for the multigrid 
method. 
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4. THE LOWEST ORDER RAVIART-THOMAS ELEMENTS 

We consider first to solve (2.1) by the triangular Raviart-Thomas elements of 
the lowest order (cf. [19]): 

FO (Tk) := {r T|K =(C+ bx) VK E Ck, with normal 

components continuous on edges of elements in 1k7, 

MO I (Tk) {v : v is piecewise constant on elements in Tk}. 

We omit the mixed formulation and the mixed element equation (cf. [1]). We will 
study the multigrid method for the equivalent (established in [1]) nonconforming 
finite element problems: Find k E Uk such that 

(4.1) S IK. 1(rk) Vvdx = JP (Tk)f. 
vdx Vv E Uk, 

where Pv denotes the L2 orthogonal-projection onto V and RTO 1 (Ik) := {fr 
r K = (a + bx, c + by) VK E Tk}. In (4.1) the multilevel nonconforming spaces are 

Uk :=Vk+Bk, 

where Vk is the P1 nonconforming space, and Bk is the space of piecewise cubic 
polynomials vanishing on all edges of Tk. We remark that v = v1 +vb is unique where 

C E1k and vb E Bk. Because P?o ( )VU = Vu1 and because IK Vul.Vvb dx = 0, 

(4.1) can be decoupled as 

S J K LkVo Vv dx = 
0 0 kXfvdx Vv E Vk, 

K cTk 

E IK hF? 1(Tk) J o VVEBk. 
KeTk 

The first equation is exactly the P1 nonconforming equation (2.2), which can be 
solved by the multigrid method defined in ?2. The second equation has a diagonal 
coefficient matrix. The equation is solved trivially. Because the two equations are 
uncoupled, and because we can recover the Raviart-Thomas solution from Ok with 
a linear order of computation (see [1]), we get the following theorem by Theorem 
3.3 (cf. [3]). 

Theorem 4.1 (Optimal order MG in solving R-T equations). The algorithm de- 
scribed in Definition 2.1 and above can produce Raviart-Thomas mixed element 
solutions up to the order of truncation error by order dim(Uk) (optimal order) 
computations. 

However, for a general-coefficient problem div(-A(x)Vu) = f the above un- 
coupling of the linear and cubic elements in the linear system is not possible. We 
will consider next (cf. [1]) to solve 

(4.2) E IKP~r(X v Vvdx JPM(Tk)fvdx Vv E Uk, 



TREATMENTS OF DISCONTINUITY AND BUBBLE FUNCTIONS 1061 

where A(x) E Wl,(Q)2X2 is a symmetric matrix, uniformly positive definite, and 
PAL.IY: L2 (- >F 1 (jTk) is a weighted L2 orthogonal-projector: 

jA-1 (PkT) i-dx = jA-l.*rdx VT E Kr i(Tk). 

In addition to the discontinuity, bubble functions also cause nonnestedness (Bkl , 
Bk). In transferring bubble functions, different from [8] and [25], we simply discard 
those bubble functions by defining Ik : Uk-l - * Uk as follows: 

(4.3) Iku:=J k(u + u') = ikU? + IkU6=ikut VU = ul + ubCE Ukl, 

where ik is defined in (2.5). We now define the bilinear forms for (4.2) and the 
discrete norms 

ab(u,v) := ZJPi z(AVu) Vvdx Vu,v E Uk, 

lUIskb := (Akuu) Vu C Uk, 0 < s < 2, 

where (Aku, v) := ab(u, v). Let Ak,b be the spectral radius of Aku. 

Definition 4.2 (A multigrid method for (4.2)). The same as Definition 2.1 except 
(2.7) and (2.8a) are replaced by (4.4) and (4.5a) respectively. 

(4-4) (WI -wI-1, v) = A-'( (Po, (Tk) (fIv) -a 1w V)) VVE Uk, 

(4.5a) a _1 (Ea, V) = (Pf, IkV) - ak(wm IkV) =: (fnewV) VV E Uk-, 

where in (4.5a) P is either PMO (T) if the k-th level is the highest level, or just the 
identity operator, i.e., depending on if the k-th level problem at the iteration is a 
finite element problem, or a coarse-level residual problem. 

Noting Vkl C Vjk C Vk C Uk, the coarse-level problem could be defined by 

(4.5b,c) ab(cb,v) = (Pfv) - ab(Wmv) =: (fnew, V) Vv CE 

where V can be chosen either as Vk1i (4.5b) or Vk (4.5c). Because of the same reason 
mentioned after (2.8b,c), one has to program both conforming and nonconforming 
elements (two sets of data structures) if one uses (4.5b) or (4.5c) instead of (4.5a) 
in practice. 

5. MULTIGRID CONVERGENCE FOR RAVIART-THOMAS ELEMENTS 

The existence and uniqueness of a solution to (4.2) can be obtained from the 
formulation of Raviart-Thomas mixed method with Lagrange multipliers (cf [1]), 
or from the following lemma on the coercivity of a (, ). 

Lemma 5.1 (Lemma 2.1 in [8]). There exists a C > 0 such that 

IUhl,k,b < CfUI1,k Vu C Ho (Q) U Uk, 

Ul11,k,b ? C 1ul1,k VU E Uk. 

Lemma 5.2. It holds that 

IJkvLikb < CJVIj,k-lb VV e Uk, for j = 0,1. 
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Proof. By a trianglewise calculation, we have (cf. Lemma 2.3 in [8]), 

(5.1) C(|u'|j,k + IU |j,k) < l + Ub |j,k VU = U + U E Uk, for j = 0,l. 

In fact IUt I 1,k + |Ub l,k = |Ut +Ub l,k (the case that A(x) is the identity matrix). We 
now apply Lemma 5.1, Lemma 3.1 and the strengthened Cauchy inequalities (5.1) 
to get 

JlkVlj,k,b < CIJkVLI,k = ClIkVL|j,k < CIV |j,k-1 < C|VLj,k-1 < C|Vljk-lb- ED 

Similar to (3.3a-b), we define the following operators: 

(5.2a) Pa Uk aUk-1, a',l(pbVW) = c4(vJkW) VW E Uk-1, 

(5.2b) pb: Uk - Vk-1, a b 
(PbVW) = ab(vW) VW E Vkl, 

(5.2c) pjb U3 -pVkl, a(PjV, W) = a(vW) VW CVk1, 

where in (5.2c) j = k - 1 or j = k. We note that, unlike the Pb in (3.3b), Pb, Pb1 

and Pk are different operators caused by PA. 

Lemma 5.3. It holds that, forj = k-I and j = k, 

(5.3) v- PVoJb < Chjv-PbVl,j,b Vv c Uj. 

Proof. The proof is similar to that for Lemma 3.2. But here we have variational 
crimes (first Strang lemma) caused by P k in the bilinear forms. Let /j = 

V -PbV. 

Note that qj is a (., .)-orthogonal in Vk_1. We define three solutions using (v-Pjv) 
as the right-hand side function in the following three equations: 

a>b (j, W) = (V-Pjvw) Vw _ Vkp, 

a (uj,w) = (v - Pjv,w) Vw c Uj, 

ab (u,w) = (v -_PV, W) VW G Ho' (Q) 

where Utj Vfk-1, Uj C Uj, u H2nHol, and abu,w) := fQ AVu Vv. We note that 
both finite element solutions iii and uj approximate u in the order of 0(hj) in the 
norm lgradj() IIL2 (), where gradj denotes the elementwise gradient operator (cf. 
for example, Proposition 2.1 in [8]). We now apply the standard duality analysis. 

V _ pbVI2 = a (uj, V-_pjbV) = aj(uj _-Uj, V _pbV) 

< zuj - Uijl,j,b I- PbV 1jb < CIIgradj(uj - iij)IL2(Q)IV- PbV ljb 

(5.4) <~ C (ljgradj(u -U)||L2 + IU-Uj|Hl) IV-PJV~1Jb 

< ChjIu|IH21v - PbVI1,job < Chj _V 105jobIVpjbV 
E 

Theorem 5.4 (The two-level method for R-T equations). LetE =c Ca in Definition 
4.2. Given any 0 < y < 1, there exists an integer m independent of the level number 
k such that 

10k - Wm+1 |1,k,b < -YIk - WO |1,k,b- 

Proof. By Definition 4.2 and the triangle inequality (see Theorem 3.3 for notations), 
we have 

(5.5) |em+1 1,kb < lem - Pem|1,k,b + |Pbem - Pbem|1,k,b + |Pbem- IkPbemI1,k,b. 
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The first and the third term in (5.5) can be analyzed as in Theorem 3.3. To estimate 
the second term in (5.5), we define fk E Uk and u E Ho(Q) 0 H2(Q) by 

(5.6) (fkv) := ak(emv) VV E Uk 

(5.7) -V(A(x)Vu) = fk weakly. 

We have |IUIIH2(Q) < Clfklokb < Clem12,k,b since Q is convex (cf. [11]). Comparing 
(5.6)-(5.7) and (5.2b,c), we realize that both Pb em and Pbem are finite element 
approximations (with variational crimes) of u in Vk1. Therefore, the second term 
in (5.5) can be estimated as in (5.4) to obtain 

_Pem -kPkem |1,k,b < IPbe - l ,kb + 1u-1Pem|1,k,b < Chk-1lem12,k,b. 

The rest of the argument in the proof of Theorem 3.3 remains the same. F 

By Theorem 5.4, Theorem 4.1 holds for the general coefficient problem (4.2). 

6. MULTIGRID METHODS FOR WILSON'S ELEMENT 

In this section, we consider multigrid methods for 2D Wilson elements on general 
quadrilateral meshes. This falls into the framework for P1 nonconforming elements. 
It is straightforward to generalize the analysis here to the case of 3-D Wilson bricks 
on rectangular brick meshes, or to the case of the modified Wilson elements [14], 
or to the case of solving linear elasticity problems (cf. [13]). 

Let K be a convex quadrilateral with vertices {pi = (xi, X')I 1 < i < 4} and 
K = [-1, 1] x [-1, 1] the reference square with vertices {fPi}. There is a unique 
bilinear mapping such that 

(6.1) FK(K) = K, FK(Pi)=pi, 1<i<4. 

On the reference square K the shape function has the following form: 

(6.2) 

u2Q1, 2) = 4 {(1 + x1)(1 + x2)U + (1-x1)(1 + X2)U + (1-x2)(1- )U 

+(1 + Xi)(1 - X2)U4} + {(1- _2)U5 + (1 -2)U6 

On K the shape function is given by u = ft o FK1. The last two terms in (6.2) can 
be called bubbles, which causes the discontinuity (and nonnestedness). A Wilson 
element function is determined by its values at the vertices pi of K and the mean 
values of the second derivatives: 

b5 J JK oa2 ? F1 dx1 dX2, u6 = JK 1&Z92 ?o FK1 dxi dX2, 
5-X72 K 1 

5-7-K 
K 

where J- 1 is the determinant of the Jacobian for FK1. 
We consider solving (2.1) by the Wilson element. Let Q be covered by a convex, 

quadrilateral grid El initially. The multilevel grids on Q are defined by linking 
the midpoints on opposite edges of previous level quadrilaterals. The family of 
subdivisions {Tk, size(Tk) = hk } is regular and satisfies the following condition of 
Shi [20]: 

Condition (B). There is a constant C depending only on the initial subdivision 
El, such that dk < Ch2 for level k. 



1064 SHANGYOU ZHANG AND ZHIMIN ZHANG 

Here dk denotes the maximal distance between the two midpoints of two diago- 
nals of quadrilaterals on level k. dkq 0 if El contains only parallelograms. The 
Wilson spaces are denoted by Wk := {u I u = 0 at all boundary vertices and UlK = 

' o F?9o VK E Tk}, where FK and '5 are defined in (6.1)-(6.2) respectively. The 
convergence of Wilson finite elements on quadrilateral grids is proved by Shi [21] 
under the Condition (B). The Wilson elements are nonconforming since they are 
not continuous on edges (but at vertices). We define ak(U,v) as in (2.2), but K 
stands for a quadrilateral now. As Wk1 9 Wk, again, we discard bubble functions 
when doing the intergrid transfer. We introduce auxiliary (conforming) spaces Wk, 
the bilinear elements on Tk (cf. [10]). Each function u E Wk1 can be uniquely 
written as w + z where w E Wklj and z is a bubble (last two terms in (6.2)). 
Noting Wk, c Wk c Wk, the intergrid transfer operator ik is defined by 

(6.3) ik : Wkl, -3Wk, iku=ik(w+z) =WC Wk-1 CWk1nWk. 

The other definitions in ?2 remain the same. We now prove Lemma 3.1 for Wilson 
elements. 

Lemma 6.1. It holds that 

j|kUj1,k < ClUlk-1 Vu E Wk-1, 1 = 0,1. 

Proof. To prove the lemma, by the equivalence of norms, it suffices to prove the 
following two estimates on one quadrilateral K c Tk-1: 

(6.4) ' |Vku dx <CJ C vu dx, 

(6.5) IK (ku) dx < J dx 

Let u = w + z be decomposed as (6.3). Mapping K to the reference element, (6.4) 
is shown as follows: 

C Vw dx2 dx < J V12 < j IVw2 dx~ + JAIVz2 dx 

= J IV(W + 2)12 d C< c V(W + z)2 dx. 

We note that the Wilson bubbles are (V , V -)-orthogonal to bilinear functions 
on squares. For the general coefficients problem, (6.4) can be easily proven by a 
strengthened Cauchy inequality (see (6.6) below), as we shall do next in proving 
(6.5). Since 

(6.6) (J wz d <) < ddi ddi2 

for some constant 0 < -yo < 1, (6.5) follows the following argument: 
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The remaining analysis in ?3 stays the same. In particular we remark that the 
conforming space Wk has the same order approximation property as that of Wk, 

like the situation for the pair (Vk, Vk). We conclude that the multigrid iteration 
has a constant convergence rate for Wilson's elements, and is of optimal order (see 
[3] and Theorem 3.3 for the details). 

7. MINI ELEMENTS FOR STATIONARY STOKES EQUATIONS 

For brevity, we will restrict our analysis to the mini elements for 2-D Stokes 
equations only, although the work can be extended in several directions, for exam- 
ple, higher space-dimensional problems and higher-degree "mini elements" (cf. [2]). 
We consider the following 2D stationary Stokes equations on a convex polygonal 
domain: 

-\u + gradp = f in Q, 
(7.1) div u = O in Q 

1 u= O on a. 

We follow the notations of Verffirth in [24], [25]. The variational problem for (7.1) 
reads: Find [u,p] At := (Ho(Q))2 x (L2(Q)/Rl) such that 

(7.2) L u, p]; [v, q]) = (f, v) V[v, q] E i, 

where (.,.) is the L2-inner product, Lj u, p]; [v, q]) := a(u, v) + b(v, p) + b(u, q), 
a(u,v) f:Qgradu: gradvdx, and b(u,p) := -j'Q divupdx. Let {Tk} be as in 

?2. Define 17k and Bk as in ?2 and ?4, respectively. The multilevel mini (mixed) 
element spaces are (cf. [2]) 

ki-k:= ( Bk) 
X 

Sk, 

where So is the space of PF conforming functions (Vk functions without the bound- 
ary condition) on Tk with mean-value zero. The mini elements are stable for Stokes 
problems: there exists a constant C independent of k such that (cf. [2]) 

(7.3) sup b(v,p) ? C|PHL2 Vp E Sky 

VC(VkEDBk)2 JIV iH1(Q)2 

Again the multilevel spaces are nonnested, lik-1 t ?Hk, due to bubble functions. 
As in ?4, we discard bubbles when doing the intergrid transfer: 

(7.4) -Tk : 'Hk-1 Ik k-1 3 k X 1 =: ik-1,1 C ik, 

(Tk[V, q]k-1 = Tk[Vk-1,1 Vk-1,bqk-1] = [Vk-1,1,qk-1]- 

In (7.4) and later, we use notations like 

[vjq]k = [Vk,qk] and TkVk-1 = Tk(Vk-1,l EDVk-l,b) = Vk-1,1- 

We define a mesh-dependent inner product as in [24]: 

(7.5) ([U. p]k; [v,q]k)O,k := (Uk,Vk) + h2(Pk,qk). 

Let Lk : 7k -- 7ik (symmetric but not positive definite) be defined by 

(Lk [u, p] k; [v, q]k)o,k = C([u,p]k; [v, q] k) V[v, q]k E 'Hk. 



1066 SHANGYOU ZHANG AND ZHIMIN ZHANG 

We order its eigenvalues as 0 < IA1I < IA21 < ?.. < JANI- We define a family of 
mesh-dependent norms: 

(7.6) III[UP]kI kS k := ((LkLk)s/ [U, p]k; [U,P]k)o,k V[U,P]k E k, -2 < s < 2. 

We now define a multigrid scheme (cf. [24]) for solving the following discretized 

version of equation (7.2): 

(7.7) L U, p]k; [v,q]) = (f,v) V[v, q] E 'Hk 

Algorithm 7.1 (One k-th level MG iteration). One iteration will produce a solu- 

tion [u,p]%+?l' Gk from a given initial guess [u,p]? as follows. 

(1) Smoothing. This is done on the normal equation. For I = 1, 2, ... , m, [U. p]k 

is defined by 

([wr]5; [v, q])0,k = (f,v) - L([uP] 1; [v, q]) V[v, q] E ?k, 

([uvP]5 - [u,P]7 1; [v, q])O,k = IANkIKC([Wr]l5; [v, q]) V[v, q] c 'Hk 

(2) Correction. Let [Up] k-1 C ?k-1 solve 

(7.9) ([U,p]k-1; [v, q]) = (f,Tkv) - LU, p] ;Ik[v, q]) V[v, q] C ik-.1 

The operator 1k in (7.9) and (7.10) below is defined in (7.4). If k = 2, let [u,p]I = 

[u,p]I. If k > 2, let [u,P]k-1 be the approximation of [u,P]k-1 C ?Hk-1 obtained 

by doing ,u (k - 1)-st level multigrid iterations with starting guess zero for some 
1u > 2. Then the new iterative solution after one k-th level iteration is defined by 

(7.10) [u, P] k : = [U, P] + -Tk [U, P]I'- 

8. CONVERGENCE ANALYSIS OF MULTIGRID MINI ELEMENTS 

Verfuirth has set up in [24] a framework for analyzing the multigrid mixed-element 

method defined in Algorithm 7.1. Our main work is to prove the stability of the 

intergrid transfer operator which throws away coarse-level bubbles. But this has 

been proved in Lemma 5.2. Here we only need to change a few minor points of the 

analysis of Verfuirth [24] because of the nonnestedness. Let [Ut, p*] 'Hk denote 

the solution of (7.7) and 

(8.1) [el) ,l = [u% - u ,p* -pk. 

be the error of the l-th iterate defined in Algorithm 7.1, 0 < I < m + 1. The 

following fine-level smoothing property is shown in [24]: 

(8.2) V[e% ,c%7j12 ? Chk mk1/2 

The next lemma is used for analyzing the coarse-level correction (7.9)-(7.10). 

Lemma 8.1. Let [Uk,pk] c Hk be L2 orthogonal to ?ik-1,1, i.e. 

(Uk,V) + h2(pk,q) = 0 V[v,q] C ?ik-1,1, 

where ?ik-1,l is defined in (7.4). Then it holds that 

||[Uki Pk] III|-2 < Ch2 |||[Uk, Pk]IIIo - 

Proof. This lemma is almost identical to Lemma 4.2 in [24] except the space 'Hk-1,1 
here is replaced by 1tk-1. But the proof in [24] does not need the inf-sup condition 

(7.3) on the subspace. It only requires the approximation property. We note that 

the space 'Hk-l,l has the same order of approximation as that for ?ik-1 and that 

?ik-l,l C 7-k. Therefore the proof in [24] remains the same. 0 
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Theorem 8.2 (Convergence of the two-level mini-element multigrid method). For 
any 0 < y < 1 there is a number m independent of k, such that 

IIIl ek '+ IEk+ ]III o < -y III [eo, kl?,E 

where [em+l, E+1] are defined in (8.1). 

Proof. We will apply the framework of Verfiirth [24]. Let [Wk1, rk-l] be the L2 

orthogonal projection of the iterative error [em, Ek] in lHk-1,1 . Let [u*-1,,p*-] be 
the exact solution of the residual problem (7.9). Since ?k-1,1 C 7kl, it follows 
by a duality argument that 

III l~em u~p~I~ ChE vqinf~ {1e - viii + I1em - qlIo} {t~k ,km ] [U~k-xp~k-1]lIIo < Chk Iv lie'H f {llek v|+ |k no 

< Chkf{ Ie - Wk-1 III + II|E -rk-1110} 

K C1I1[em, Em - [Wk-l,rk-1] IIlo, 
where in the last step we used an inverse inequality on P1 elements. Because of the 
nonnestedness of spaces, the (m + 1)-st iterative error is actually 

||| [ek?+, ek?+] k = II [e eI] - ek [kUi rk-i] lb 

? |||[em, em] - Tk [Wk-1 )rkl] ll0 + ?lllk [Wk- 1, rk-] -k k[Uk- 1, k1] ll0 

- |||[e ecm] - [Wk-1vrk-1] Ilo + II|k([Wk-I1,rk-1] - [u*-lP*I])IIIo 

? II1[em,] - [Wk-1,erk-1]lo + CIII[Wk-1, rk-l] - [uk- 1 p ] III o, 

where Lemma 5.2 is applied in the last step. Combining the above two estimates 
we obtain 

I[e m+ I e +1 ]Ilho < C011[e, em] - [Wk-l, rk-1]1lb. 

Applying (8.2) and Lemma 8.1, we can get now (cf. [24]) that 

III[e, e%] - [Wk-1, rk-1] 1112 < C0II [em, e'klIj12I[er em] - [Wk-l, rk-l]III-2 

< II[eo, e] IllolIl[em, Em - [Wk-lrk-1]lb.10 

Therefore, the proof is completed by choosing m large enough as 

IIIl[e%+ , e ] l ? = III [ek, e~k] lII D2 

9. NUMERICAL TESTS 

In our numerical tests, we solve (2.1) where 

(9.1) f(x, y) = 2y(1-y) + 2x(1-x) and Q = (0, 1) x (0, 1). 

Q is uniformly triangulated as in Figure 1. The energy norm squares of the conform- 
ing finite element (CFE) and the nonconforming finite element (NCFE) solutions 
are listed in Table 1. We note that for CFE, Lu - UkI12 = IlUII2 1- IIukI12 . The 

relative nodal errors on level 5 are about 0.5% for CFE and 0.15% for NCFE, but 

dim(Vik) dim(Vk)/3. This is interesting. The solution in Vk is better than that in 

1/k, but the cost for NCFE is not necessarily more than that of CFE. As a matter 

of fact, in our code, the NCFE consumes a little less computing time, partially 

because a node is shared by 6 triangles in CFE but only 2 in NCFE. We remark 

that the stiffness matrices are not generated in our code, and that the matrix-vector 

product is evaluated triangle by triangle. 
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Af 

FIGURE 1. Nodal errors before (A) and after doing a coarse-level 
correction by Jk_ (B), or by ik (C), or by 1k (D), or by P1 CFE 
nested correction in 17k (E). 

TABLE 1. Comparison of conforming and nonconforming finite elements. 

level number of unknowns IUk lk 

CFE NCFE CFE NCFE 
4 81 208 0.020 762 645 0 0.022 354 189 9 
5 289 800 0.021848 924 6 0.022 255 785 9 
6 1,089 3,136 0.022 128 362 3 0.022 230 649 5 
7 4,225 12,416 0.022 198 723 6 0.022 224 331 3 
8 16,641 49,408 0.022 216 345 5 0.022 222 749 6 
00 00 00 0.022 222 222 2 ... 0.022 222 222 2 ... 

We then test several "prolongation" (intergrid transfer) operators for NCFE. 
In Figure 1, the nodal errors before and after doing a coarse-level correction are 
plotted. The operator of Brenner [7] and Braess-Verffirth [4] (IkJ1) is used in 
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Figure iB, while ik (defined in (2.5) ) is used in Figure IC. It seems the difference 
between the two is small. In Figure ID, another averaging operator Ik is introduced: 

Ik:VOk~1-*Vk ck; JkV () = {s(n) if n Is a vertex in Ek-1, {v(n) if n is a midpoint in Tkl,. 

We remark that the operator 'k is also used by Vassilevski and Wang in [23] recently. 
The graph shows that 'k is better than both Ik and 'k If we use P1 CFE as 
the coarse-level subspaces (a nested multigrid method now), then both higher- and 
lower-frequency components of the error are reduced as shown in Figure lE. 

The operation counts for various "prolongation" operators are listed below (note 
that dim(Vk) 12dim(Vk-1)): 

Operators Ik Ik-1 Ik Ik 
|Operations (times dim Vk) | 6 7 4 3 

Here we introduce a simpler prolongation operator Ik: Let c be the midpoint of 
an edge ab in Tkl. Ik simply takes the value v(c) as the values of Ikv at the 
midpoints of ac and cb. It seems that this operator transfers NCFE roughly. But 
the convergence rate of the multigrid method defined by this operator is not worse 
than that with ik (see Table 2). 

In Table 2, we list the number of V-cycles needed for a multigrid method with 
p = 1 and m = 8 in Definition 2.1. By Figure 1D-E, the multigrid method seems to 
have a better convergence rate using coarse-level correction (2.8c) than using (2.8a) 
with ik replaced by 'k. But it turns out that the two rates are about the same by 
the data in Table 2. In the last column of Table 2, we list the data for CFE. By 
Table 2, one may conclude that the NCFE multigrid with various perturbations in 
(2.8a) is almost as good as the CFE multigrid. 

TABLE 2. Numbers of V-cycle iterations. 

interpolator CFE 
level Ik 'k-1Ik I (2.8c) Ik 

4 8 6 6 6 7 3 
5 9 7 7 7 11 6 
6 9 8 7 7 10 7 
7 9 8 7 7 9 7 
8 9 8 7 7 9 6 

In Table 3, the spectral radii are presented for solving (4.2). The smoothing 
and correction operators are defined respectively by S := (I - A-1Ak) and C 
(I-IkAk -lI kAk) (cf. (2.7-2.8)). Here, Ik is either defined by (4.3) or the Ik-1 
defined in [7] and [4]. In matrix form, the Ak for (4.2) is a 2-block diagonal matrix. 
The matrix in the first block is the Ak for P1 NCFE (2.2). The second block is 
diagonal, generated by bubble functions. We scale bubbles such that each has a 
nodal value 60/3 at its barycenter to get basis functions. Therefore the spectrum 
of the multigrid operator associated with this lower block is very close to zero, no 
matter that the bubbles are thrown away (our method) or projected to fine-level 
bubbles ([8]). 
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TABLE 3. Spectral radii of 2-level multigrid operators for (4.2). 

grid interpolator Ik interpolator ik 
(# unknowns) p(S p(SC) p(C) p(S4C) p(SC) p(C) 

4 x 4 ( 40) 0.5422 0.8516 1.0000 0.7145 0.9194 1.0000 
8 x 8 (176) 0.5708 1.0745 1.4144 0.7681 0.9361 1.0000 

12 x 12 (408) 0.6295 1.1957 1.5865 0.7774 0.9390 1.0000 
16 x 16 (736) 0.6548 1.2445 1.6554 0.7804 0.9399 1.0000 
20 x 20(1160) 0.6672 1.2684 1.6888 0.7818 0.9403 1.0000 

As we know, the orthogonal-projection would be lost in (2.8a) when the mul- 
tilevel spaces are nonnested. The number of fine-level smoothings has to be suf- 
ficiently large in this case. This is verified in column 4 of Table 3. The V-cycle 
using Brenner's method with one step of smoothing diverges according to the data 
in column 3 of Table 3. Surprisingly, one smoothing is enough to ensure the con- 
vergence of nonnested multigrids when our new intergrid transfer operator ik is in 
use. Columns 2 and 5 of Table 3 show that Brenner's method is better (consistent 
with Table 2). But Columns 3 and 6 of Table 3 imply that our method is better. 
It tells us that ik is more stable than Ik_ 1. In fact, it can be seen in the analysis of 
Oswald [17] that lvi1 < fIk_1vf1 < CIvI1. 

We now present the convergence rate of a multigrid method for solving (9.1) 
via Wilson's elements on uniform square grids. As we pointed out in the proof 
for Lemma 6.1, Wilson's "bubbles" are (V., V .)-orthogonal to bilinear functions. 
The stiffness matrix has 2 diagonal blocks where the block for bubbles is diagonal. 
The rate of convergence of multigrid using Wilson elements is the same as that for 
bilinear elements. We list here the spectral radii of 2-level multigrid methods with 
one step of presmoothing: 

grid 6x6 10x10 14x14 18x18 22x22 26x26 30x30 
unknowns 97 281 561 937 1409 1977 2641 

spectral radius 0.4302 0.4751 0.4874 0.4924 0.4949 0.4963 0.4973 

Next we consider the multigrid method in ?7 for mini elements. We replace 
the cubic bubbles in the standard mini element by macro linear-bubbles. This is to 
avoid using high-order numerical quadratures. Let 0 be the barycenter of a triangle 
T = AABC E Tk. The spaces of macro linear-bubble functions are defined by 

Bk := span {q q is linear on AABO, AACO and ABCO, 

q5 is continuous on T and q3|&T = 0 VT E Tk}. 

Following [2], we can show that the stability condition (7.3) holds for the modified 
mini element: 

Hk := (iD PBk) X 
Sk?. 

The multigrid analysis remains valid. We construct all matrices in the multigrid 
method (uniform grids on the unit square domain) and use MATLAB to find the 
spectral radii of iterative operators. 

Columns 3 and 4 of Table 4 consist of the data of the multigrid method when 
the bubbles are discarded or averaged by the Verfuirth method [25], respectively. 
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TABLE 4. Spectral radii of 2-level multigrid mini-elements. 

grid smoothings MG iterations 
(# unknowns) p(S7 ) p(CzS P(Cvs8) 

4 x 4(106) 0.99981616 0.8867 0.8868 
6 x 6(242) 0.99995724 0.9033 0.9169 
8 x 8(434) 0.99999154 0.9211 0.9201 

10 x 10(682) 0.99999688 0.9219 0.9214 
12 x 12(986) 0.99999870 0.9219 0.9215 

TABLE 5. Maximal errors at vertices and barycenters. 

grid L? (Q) l00-error at barycenters(c), nodes(n) 
(# unknowns) ik?bl N-Ukl(c) | N-Uk,11(c) lu-uk,1(n) 

2 x 2( 26) 0.1070 0.8865 0.9144 0.0000 
4 x 4(106) 0.1027 0.5607 0.6111 0.2990 
8 x 8( 434) 0.0308 0.1535 0.1566 0.0564 

16 x 16(1762) 0.0590 0.0533 0.0518 0.0373 
32 x 32(7106) 0.0028 0.0101 0.0098 0.0039 

Both methods have constant rates of convergence. We remark that the original 
algorithm of [25] contains a minor error. It is necessary to include the intergrid 
transfer operator into the coarse-level residual equation (7.9) (cf. [4] [6], [7], [26] 
and [27]). The idea of discarding bubble functions is based on the fact that bubble 
functions only provide the stability but not the approximation property. We next 
numerically check it. The test problem is the Stokes equations (7.1) on the unit 
square with f= -A~curlg where g = 100x2(1 -x)2y2(1_ y)2. The exact solution is 
curlg. In column 2 of Table 5, the maximal norms of bubble functions are listed. 
The maximal nodal errors of the mini-element solutions are shown in columns 3-5. 
We can see that the convergence of the mini element is of the same order as that 
of the linear part of the mini element, both O(h2) in l'-norm. 

To conclude, we would remark again that the way to treat the discontinuity 
and bubbles in the multigrid method is not unique. Each method may have its 
advantages and disadvantages, depending on the specific implementation. 

DEDICATION 

We dedicate this paper to Professor James H. Bramble. An early version of this 
paper [28] was dedicated to Professor Bramble at the workshop on Mathematics of 
Computation in Partial Differential Equations held at Cornell University, January 
25-27, 1991, in honor of his 60th birthday. 
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